Pages

Monday, 7 July 2025

China Mobile's PQC Strategy Advances BASIC6 and 6G Security Vision

China Mobile continues to demonstrate a forward-thinking approach to innovation, especially as it prepares for the security demands of future networks. Its recent white paper on post-quantum cryptographic (PQC) migration in telecommunication networks, published through GTI, outlines both the challenges and roadmap for ensuring security resilience in the quantum era. This work aligns strongly with the operator's broader BASIC6 sci-tech innovation strategy, where 6G and security sit alongside big data, AI, integration platforms and computility networks as core pillars of future readiness.

As quantum computing capabilities evolve, current cryptographic systems face a growing threat. The white paper details how quantum algorithms like Shor's and Grover's could undermine widely used encryption and authentication schemes such as RSA, ECDSA and Diffie-Hellman. While symmetric encryption can be strengthened through increased key lengths, public key systems will require fundamental change. This poses a particular concern for telecom networks, where secure identity, signalling integrity and encrypted communication are vital.

The analysis examines vulnerabilities across key network components, including the 5G core, signalling, bearer, transport and synchronisation networks. Each of these relies on a combination of cryptographic mechanisms that will need to be assessed and upgraded to support quantum-resilient algorithms. China Mobile explores how NIST-approved PQC schemes like CRYSTALS-Kyber and Dilithium can be integrated, though this shift brings practical issues such as increased key sizes, protocol field expansion and processing latency.

Migration to PQC in telecom environments is not straightforward. Beyond technical integration, there are questions of industry alignment, certificate management, hardware support and standardisation. China Mobile points out that new certificate formats must accommodate hybrid cryptography while remaining compatible with legacy systems. Moreover, real-time services, especially at the edge, may suffer from the computational overheads of post-quantum cryptographic algorithms. This makes algorithm selection critical depending on scenario requirements.

These considerations are closely connected with China Mobile's larger push towards future network architectures. Under the BASIC6 umbrella, the company is laying the groundwork for 6G systems that integrate communications, computing, intelligence and sensing. Their work includes development of testbeds, international standardisation contributions and advanced platforms like the computility network, which is already managing over 60 EFLOPS of computing capacity nationwide. With quantum computing systems, quantum-secure communication prototypes and endogenous security now in place, post-quantum cryptography is a natural continuation of this broader effort.

The operator's leadership in 6G standards within 3GPP and ITU, combined with its role in defining the first global 6G requirements and scenarios, places it in a strong position to shape how PQC becomes a core feature of next-generation mobile infrastructure. Post-quantum security is not just about reacting to a threat. It is a foundational design choice that must be embedded from the outset of 6G network development, supporting trust, resilience and regulatory compliance across use cases.

China Mobile's approach provides a model for how national carriers can combine practical migration planning with strategic innovation goals. PQC integration will require deep collaboration across the ecosystem, from chipmakers and protocol developers to equipment vendors and standards bodies. But for operators aiming to deliver world-class secure information services in the 6G era, these efforts are already becoming a competitive necessity.

This important work builds on several topics already covered in detail on the Free 6G Training Blog, including post-quantum cryptography, quantum network architecture and 6G security. As the quantum age approaches, ensuring that security evolves alongside performance and scalability is one of the most pressing challenges for operators worldwide.

Related Posts

No comments:

Post a Comment